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Abstract
Accurate diagnosis of psychiatric disorders plays a critical role in improving the quality of life for patients and potentially 
supports the development of new treatments. Graph convolutional networks (GCNs) are shown to be successful in modeling 
applications with graph structures. However, training an accurate GCNs model for brain networks faces several challenges, 
including high dimensional and noisy correlation in the brain networks, limited labeled training data, and depth limitation 
of GCN learning. Generalization and interpretability are important in developing predictive models for clinical diagnosis. 
To address these challenges, we proposed an ensemble framework involving hierarchical GCN and transfer learning for 
sparse brain networks, which allows GCN to capture the intrinsic correlation among the subjects and domains, to improve 
the network embedding learning for disease diagnosis. Extensive experiments on two real medical clinical applications: 
diagnosis of Autism spectrum disorder (ASD) and diagnosis of Alzheimer’s disease (AD) on both the ADNI and ABIDE 
databases, showing the effectiveness of the proposed framework. We achieved state-of-the-art accuracy and AUC for AD/
MCI and ASD/NC (Normal control) classification in comparison with studies that used functional connectivity as features 
or GCN models. The proposed TE-HI-GCN model achieves the best classification performance, leading to about 27.93% 
(31.38%) improvement for ASD and 16.86% (44.50%) for AD in terms of accuracy and AUC compared with the traditional 
GCN model. Moreover, the obtained clustering results show high correspondence with the previous neuroimaging derived 
evidence of within and between-networks biomarkers for ASD. The discovered subnetworks are used as evidence for the 
proposed TE-HI-GCN model. Furthermore, this work is the first attempt of transfer learning on the two related disorder 
domains to uncover the correlation among the two diseases with a transfer learning scheme.

Keywords Graph convolutional networks · Disorder disease diagnosis · Brain network · Resting-state fMRI · Transfer 
learning

Introduction

Autism spectrum disorder (ASD) (Bajestani et al., 2019; 
Heinsfeld et al., 2018) and Alzheimer’s disease (AD) (Wang 
et al., 2018; Duc et al., 2020) are neurodevelopmental and 

neurodegenerative disorders respectively, with devastating 
effects not only on the individual but also the society. Neu-
roimaging has provided relevant information on the diag-
nostic status and disease progression of brain disorders. 
Resting-state fMRI images provide us blood-oxygenation-
level-dependent (BOLD) signals as a neurophysiological 
index to probe brain activity, which has been applied to the 
diagnosis of ASD and AD. The rs-fMRI data has a complex 
structure, which is inherently represented as a network with 
a set of nodes and edges (Khosla et al., 2019; Wang et al., 
2020). There has been evidence of network-level changes in 
the ASD brain compared to an NC (Normal control) brain. 
Therefore, many works focus on modeling the whole brain 
rs-fMRI as a network (Qi et al., 2015; Zhu et al., 2019) 
and extracting representation from the network (Khazaee 
et al., 2016; Mier & Mier, 2015). The commonly used fea-
tures are calculated based on graph-theoretic analysis, such 
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as clustering coefficients and local clustering coefficients 
(Wang et al., 2010) based on the local connectivity patterns 
among brain regions. However, hand-crafted network fea-
tures may not be precise enough to represent or characterize 
the brain networks (Chen et al., 2017; Guo et al., 2017).

In order to analyze the network data, a surge of network 
embedding (a.k.a. graph embedding or graph representation 
learning) methods have been proposed (Yue et al., 2020; 
Grover & Leskovec, 2016; Tang et al., 2015), where their 
goal is to automatically learn a low-dimensional feature rep-
resentation for a network while maximally preserving the 
network structure. In recent years, the high-level feature rep-
resentation of deep convolutional neural networks has been 
proven superior to hand-crafted low-level and mid-level 
features (Ebrahimighahnavieh et al., 2020; Lundervold & 
Lundervold, 2019; Litjens et al., 2017). However, convolu-
tional neural networks and recurrent neural networks have 
mainly focused on the grid-structured inputs rather than net-
work structure data. Kipf and Welling (2016) proposed graph 
convolutional networks (GCN) as an effective graph embed-
ding model that naturally combines structure information and 
node features in the learning process. It has emerged to learn 
deep representations of graph-structured data and has shown 
to outperform other traditional relational learning methods 
(Zhou et al., 2020; Wu et al., 2020). Recent work has applied 
GCN on the functional network derived from rs-fMRI data 
to extract latent features from a graph (Parisot et al., 2017; Li 
et al., 2019; Ktena et al., 2018; Parisot et al., 2018). Inspired 
by these works, we focus particularly on GCN methods for 
analyzing the neuroimages of brain disorders prediction in an 
end-to-end fashion. However, at the current stage, the fMRI 
image classification via GCN models faces many challenges 
as follow:

Challenge 1: Noisy correlations in the brain network.
In the brain network, considering all the correlations may 

lead to the inclusion of noisy and spurious connections. The 
presence of noise in brain images is owing to the fact that 
measurement errors are likely to arise due to technologi-
cal limitations, operator performance, equipment, environ-
ment, and other factors (Vaishali et al., 2015). Currently, 
Pearson’s Correlation Coefficient (PCC) is the simplest and 
most widely-used method in constructing functional brain 
networks. However, the PCC tends to result in a brain net-
work with dense connections. The both issues cause overfit-
ting issues and increase computational complexity. Due to 
its high dimensionality and high noise levels, analysis of a 
large brain functional network may not be powerful enough 
and easy to interpret. Removing weak (potentially noisy) 
connections depends on a hardthreshold without enough 
flexibility. The prediction accuracy as well as reliable and 
explainable biomarkers still remain the key focus of brain 
networks research.

Challenge 2: Limited labeled training data.

Network embedding learning with GCN requires a large 
collection of training data. However, another challenge is 
that the amount of available labeled data is usually very 
small in the clinical application, which limits the classifica-
tion performance.

Challenge 3: Depth limitation of GCN learning.
Li et al. (2018) and Li et al. (2019) recently studied the 

depth limitations of GCNs and showed that deep GCNs could 
cause over-smoothing, which results in features at vertices 
within each connected component converging to the same 
value. As a result, most state-of-the-art GCN models are not 
deeper than 3 or 4 layers. Oversmoothing has been assumed 
to be the major cause of a performance drop in GCNs.

All the issues hinder network embedding learning for 
GCN. The motivation for this work stems from the problem 
of training GCN on the brain networks data. In this work, 
we aim to construct a cleaned brain network and network 
embedding model in a jointly learning manner and improve 
the network embedding learning by exploiting the poten-
tial associations among the subjects and the clinical disease 
domains. Our main contributions to the brain network clas-
sification are summarized as follows:

1. Removing noisy correlations in the brain network.
The feature reduction method can eliminate the noisy 

features and thus improve computational efficiency, clas-
sification and interpretation of the results. Brain networks 
are organized across multiple spatial scales and also can be 
analyzed at topological (network) scales ranging from indi-
vidual nodes to the network as a whole. Therefore, the multi-
scale scheme can sparsify the brain networks by removing 
weak connections. At the same time, we incorporate a multi-
graph clustering (MGC) into a GCN model to enhance the 
important connections and further remove the irrelevant con-
nections with a supervision scheme. The multi-scale brain 
networks construction combined with clustering could gen-
erate more robust and biologically meaningful functional 
connectivity networks.

2. Exploiting the association within the subjects for 
GCN.

To exploit the association in the subjects, all the train-
ing samples are treated as networks, and the aim is to learn 
a network embedding for subjects by preserving both the 
topology structure within individual brain functional net-
works and the association among the global population net-
work. The previous work on network embedding learning 
of brain functional networks considers each instance inde-
pendently in the learning process, ignoring the association 
among instances. Incorporating and preserving the intrinsic 
data association can promote learning a better embedding 
of the brain functional network by capturing global infor-
mation. Modeling the networks in a hierarchical fashion 
also increases the receptive field of graph convolutions and 
allows for training a deeper GCN.
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3. Transfer learning across the relevant disorder 
domains.

The transfer learning technique is another good choice 
for dealing with limited data. However, it has received less 
attention in the disorder domain. To leverage the association 
in the clinical disease domain, we design a transfer learning 
framework for network data across neurological disorders. 
In medical applications, transfer learning is commonly per-
formed by taking a standard ImageNet architecture along 
with its pre-trained weights and then fine-tuning it on the 
target task. However, the classification task in ImageNet and 
disorder diagnosis have considerable differences (Raghu 
et al., 2019). Given the marked differences between natural 
images and medical images, we hypothesize that transfer 
learning can achieve more powerful target models if the 
source models are built directly on the brain networks from 
relevant diseases (Zhou et al., 2019). Some previous works 
have demonstrated the aspects of similarity in etiology and 
pathology between autism and Alzheimer’s disease (Nasrat 
et al., 2017; Khan et al., 2016; Eid & Eid, 2019). In our 
work, we conduct transfer learning with GCN for network 
data acquired from patients with different diseases (ASD and 
AD) and investigate the correlation in the related brain disor-
der domains in a computational framework. Such finding is 
crucial evidence for the generalization of existing knowledge 
across populations for early diagnosis and prognosis of brain 
disease diagnosis.

More specifically, we propose an Ensemble of Transfer 
HIerarchical Graph Convolutional Networks, called TE-HI-
GCN, to improve the performance of disease diagnosis with 
a limited amount of labeled data. The connectivity in brain 
networks is characterized at different levels to better study 
the multi-scale of brain networks. Selecting an appropriate 
network architecture for analyzing rs-fMRI data is not trivial. 
To achieve it, we first employ multiple thresholds to generate 
sparse connectivity networks to reflect different levels of the 
topological structure of the original connectivity networks. 
For each sparse network, we propose a hierarchical GCN 
(HI-GCN) framework for modeling the brain connectivity 
network and population network simultaneously to learn a 
network feature embedding while considering the network 
topology information and subject’s association. Through 
the joint learning of HI-GCN, a high-level embedding of 
brain network representation can be effectively learned in 
an end-to-end fashion with global supervision such that the 
embedding learned is useful for classification. On the other 
hand, we propose a transfer learning scheme enabling HI-
GCN to learn generic graph structural features by leverag-
ing the commonality in two related domains. To transfer 
the appropriate knowledge for the network data avoiding 
negative transferring, the transfer learning is also carefully 
conducted on the multiple levels of topological structure in 

the original connectivity network. Finally, for final clinical 
decision-making, we construct an ensemble classifier from 
multiple HI-GCN as target-level representations, each of 
which is obtained by training and transferring on the multi-
ple levels sparse connectivity network. Moreover, the mul-
tiple HI-GCN models trained on the networks with different 
sparsity levels can reduce the chance that negative transfer 
happens. Extensive experiments on two real medical clinical 
applications: diagnosis of ASD and diagnosis of AD, which 
demonstrates network embedding learning from explor-
ing the data correlations and transferring from the related 
domains can improve prediction performance. The code is 
available at: https:// github. com/ llt18 36/ TE- HI- GCN.

Furthermore, the proposed method has the following 
desirable properties: 

1. General: TE-HI-GCN is a general learning model, 
which may be useful in other medical or biochemical 
applications with network data.

2. State-of-the-Art: TE-HI-GCN outperforms previous 
methods on three established datasets.

3. Interpretability: TE-HI-GCN can identify the biomark-
ers of subnetworks, and to the best of our knowledge, 
this work is the first attempt of transfer learning on the 
two related disorder domains to uncover the correlation 
and knowledge transfer across brain disorder diseases.

4. Robust: TE-HI-GCN can handle the small data with 
high dimension noisy connections. Finally, we experi-
mented with different atlases, proving evidence of the 
robustness of the proposed method.

The rest of the paper is organized as follows. In “Related 
Work”, we present the related work. In “Preliminaries of 
Graph Convolutional Networks (GCN)”, we provide an 
introduction of the fMRI network and GCN. A detailed 
mathematical formulation of TE-HI-GCN is provided in 
“An Ensemble of Transfer Hierarchical Graph Convolutional 
Networks for Disorder Diagnosis, TE-HI-GCN”. In “Experi-
ment”, we conducted extensive experiments to verify the 
advantage of our method for the diagnosis of ASD and AD. 
The conclusion is drawn in “Conclusion”.

Related Work

Researchers have started exploring the application of deep 
learning methods to the analysis of fMRI. A relatively recent 
trend is to exploit neural networks for graph-structured data, 
such as Graph Convolution Networks or BrainNetCNN 
(Kawahara et al., 2017), to make individual-level predictions 
on connectomes. Recently, there are some research works 
introducing GCNs into fMRI analytics. Ktena et al. (2018) 

https://github.com/llt1836/TE-HI-GCN
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used the graph representations to model the functional con-
nectivity derived from fMRI data between a set of ROIs and 
proposed to learn a graph similarity metric using a siamese 
graph convolutional neural network. The proposed framework 
operated in the graph spectral domain to evaluate the similar-
ity between a pair of graphs. Their method demonstrated to 
perform tasks of classification between matching and non-
matching graphs by evaluating the similarity metrics between 
different brain connectivity networks. Yao et al. (2019) pro-
posed a multi-scale triplet graph convolutional network 
(MTGCN) for brain functional connectivity analysis with rs-
fMRI data. They first employ multi-scale templates for coarse-
to-fine ROI parcellation to construct multi-scale FCs for each 
subject. Then a triplet GCN model is developed to learn multi-
scale graph representations of brain FC networks, followed by 
a weighted fusion scheme for classification. Li et al. (2019) 
proposed a generalizable GCN inductive learning model to 
more accurately classify ASD v.s. Normal Controls (NC). 
The proposed GCN integrates all the available connectivity, 
geometric, anatomic information and fMRI related parameters 
into graphs for deep learning, and the proposed classifier is 
based on graph isomorphism, which can be applied to multi-
graphs with different nodes/edges (e.g. sub-graphs). Anirudh 
and Thiagarajan (2019) proposed a bootstrapped version of 
graph convolutional neural networks (G-CNNs) that utilize an 
ensemble of weakly trained G-CNNs and reduce the sensitiv-
ity of models on the choice of graph construction.

Deep learning methods for computer aided mental 
disorder diagnosis in the neuroimages may be lack of 
underlying neural anatomical or functional evidence. 
Another line of work is finding the biomarkers associ-
ated with disorder disease. It is helpful for understand-
ing the underlying roots of the disorder and can lead to 
earlier diagnosis and more targeted treatment. Li and 
Duncan (2020) proposed BrainGNN, a graph neural net-
work (GNN) framework to analyze functional magnetic 
resonance images (fMRI) and discover neurological bio-
markers. BrainGNN involves ROI-selection pooling lay-
ers (R-pool) that highlight salient ROIs and topK pooling 
(TPK) loss combined with group-level consistency (GLC) 
loss as regularization terms to encourage reasonable ROI-
selection and preserve either individual- or group-level 
patterns. Arslan et al. (2018) applied a GCN for the classi-
fication of sexes based on the brain functional connectiv-
ity matrix derived from task fMRI data. He proposed an 
activation-based approach to identify salient graph nodes 
using spectral convolutional neural networks. The work 
in (Li & Duncan, 2020) and (Arslan et al., 2018) identify 
the most indicative ROIs (brain regions) after the node 
embedding learning with a series of graph convolution 
inspired by recent findings which suggest that some ROIs 
are more indicative of predicting neurological disorders 
than the others.

Preliminaries of Graph Convolutional 
Networks (GCN)

Supervised learning of brain networks. We define an 
undirected graph for each subject, Ni =

{
Ri,Ai

}
 , where 

Ri = {r1
i
, ..., rM

i
} is the set of M nodes, and Ai ∈ RM×M is 

the adjacency matrix describing the network’s connectiv-
ity in the i-th subject, where M is the number of ROI. Here 
M = 116 . The embedding of each vertex in R is learned 
during the GCN training, therefore the initial value of Ri 
is set to be one. Given a network N , to identify whether 
a subject has a certain brain disorder can be regarded as 
a graph classification task. In the graph classification set-
ting, we have a set of graphs 

{
N1,… ,ND

}
 , where D is the 

size of dataset. Each graph Ni is associated with a label yi.
Graph convolutional networks (GCN). Graph convo-

lutional neural networks (GCN) aim to extend the data rep-
resentation and classification capabilities of convolutional 
neural networks, which are highly effective for signals 
defined on regular Euclidean domains, e.g. image and audio 
signals, to irregular, graph-structured data defined on non-
Euclidean domains. The graph convolution is employed 
directly on graph structured data to extract highly mean-
ingful patterns and features in the space domain. Formally, 
given an adjacency matrix A ∈ ℝ

M×M , GCN is stacked by 
several convolutional layers can be written as:

where Ã = A + In , D̃ii =
∑

j Ãij , W is a trainable weight 
matrix, E(l+1) are the node embeddings computed after l 
steps of the GCN, and the node embeddings E(l) generated 
from the previous message-passing step.

GCN can be considered as a Laplacian smoothing opera-
tor for node features over graph structures. The architecture 
of GCN consists of a series of convolutional layers, each fol-
lowed by Rectified Linear Unit (ReLU) activation functions 
to increase non-linearity. The first hidden layer E(0) is a set 
of the input original node features. All layers share the same 
adjacency matrix. A full GCN run L iterations of Eq. (1) to 
generate the final output node embeddings, E(L).

An Ensemble of Transfer Hierarchical Graph 
Convolutional Networks for Disorder 
Diagnosis, TE‑HI‑GCN

This section starts with the architecture overview of our 
proposed predict-refine model, TE-HI-GCN in “Overview 
of Network Architecture of TE-HI-GCN”. We describe the 
sparse brain network construction firstly in “Sparse Brain 
Networks Construction” followed by the details of our newly 
designed HI-GCN and transfer learning module in “Hierar-
chical GCN” and “Transfer Learning for GCN”.

(1)E
(l+1) = ����(D̃

−1∕2
ÃD̃

−1∕2
E
(l)
W

(l)),
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Overview of Network Architecture of TE‑HI‑GCN

First, we design an efficient multi-scale brain network learn-
ing framework in order to better understand the brain activ-
ity in the multi-level brain network (Betzel & Bassett, 2017). 
The proposed architecture is shown in Fig. 1. It consists 
of two components: the HI-GCN component for network 
embedding learning and the transfer learning component for 
knowledge transferring. Specifically, we first apply multiple 
thresholds to generate multiple thresholded connectivity net-
works to reflect different levels of topological structure of 
the original connectivity network. (Here, different thresholds 
determine their corresponding different levels of topologi-
cal structure). In our study, the range of sparsity level in the 
brain networks is set to [0.05, 0.5].

Then, for each threshold value, we derive a sparse net-
work of each subject and the corresponding population net-
work. In order to better study the multi-scale of the brain 
network, the population network is also constructed by all 
the subjects with the same sparsity level. At each level, both 
hierarchical representation learning and transfer learning 
are trained and conducted on the sparse brain network data 
to guide the training of GCN. With the cooperation of two 
components, GCN can learn a discriminative network rep-
resentation for the brain network, thus enabling improving 
network classification performance. However, it is difficult 
to make a principled choice of threshold values. Different 
thresholds determine their corresponding different levels of 
topological structure. Therefore, it is important to identify 
the optimal trade-off between the information gain by the 
removal of noisy edges and the loss due to the removal of 
potentially useful weak edges. Rather than optimize for the 
best threshold value, we adopt an ensemble classification 

strategy over a range of thresholds, a simple and effec-
tive fusion method with voting, to combine the results on 
multi-scale topological information in the brain network for 
clinical decision making. The ensemble method combines 
multiple models in order to get a better and more compre-
hensive generalized model. The diversity of the proposed 
TE-HI-GCN comes from the different training network data 
with different sparsity level representations. Therefore, our 
TE-HI-GCN produces different target-level representations 
of the brain networks, learned from possibly different sparse 
brain networks data. By exploiting multiple classifiers in an 
ensemble manner, we also expect the ensemble network can 
overcome the prediction noise of the predictive model and 
edge noise of the brain networks.

Sparse Brain Networks Construction

The construction of the brain network from fMRI involves 
two steps which are shown in Fig. 2. At first, the mean time 
series for a set of regions extracted from the automated ana-
tomical labeling (AAL) atlas dividing the brain into 116 
regions according to structural criteria (Tzourio-Mazoyer 
et al., 2002) are computed and normalised to zero mean and 
unit variance. Then, we compute the region-to-region brain 
correlations by Pearson’s correlation coefficient (PCC).

where Cov(vi, vj) is the cross covariance between vi and vj , 
and �v denotes the standard deviation of v.

In a brain network, considering all the correlations may 
lead to the inclusion of weak and spurious connections. The 

(2)Q(ri, rj) =
Cov(vi, vj)

�vi , �vj

Fig. 1  The architecture of the 
proposed TE-HI-GCN model 
for brain network classification
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weak connections that are most influenced by experimental 
noise need to be removed for further analysis. The sparse 
representation-based brain network construction methods 
with thresholding strategies could generate more robust and 
biologically meaningful functional connectivity networks. 
We employ a thresholding operator to alleviate noises and 
outliers for constructing the brain networks and generating 
multiple thresholded connectivity networks, to reflect dif-
ferent levels of topological structure of the original connec-
tivity network. Specifically, we use the threshold � to filter 
noisy edges, and the operation can be written as

Finally, we ensemble all the predictions to determine the 
predicted class using a normalized majority voting strategy.

Hierarchical GCN

In such a setting of the population analysis, each subject 
acquisition is represented by a node, and pairwise similari-
ties are modeled via edges connecting the nodes. Given a 
collection of images modeled as graphs Ni and the associ-
ated label yi , we construct a global population network 
N̂ =

{
R̂, Â

}
 , where Â is the adjacency matrix describing 

the pairwise similarities between each pair of subjects with 
brain networks. Each subject is represented by a vertex r̂ and 
is associated with a network data. This leads to a hierarchical 
graph in which a set of graph instances are interconnected 
via edges. This is a very expressive data representation, as 
it considers the relationship between graph instances rather 
than treating them independently. The definition of the 
graph’s edges is critical in order to capture the underlying 
structure of the data and explain the similarities between 
each pair of the N . We employ a graph kernel to estimate the 
Â(Ni,Nj) between two network inputs of subjects. The diag-
nosis with brain functional networks is a typical graph clas-
sification problem where brain networks are inputs and the 
predictions of the clinical stauts (i.e. patient with a disorder 

(3)Q(ri, rj) =

{
Q(ri, rj) , �� Q(ri, rj) ≥ �

0 , ����

or normal control) are outputs. The aim is to learn the most 
essential embedding by taking full advantage of the correla-
tion and structure within the graph and accurately predict 
the label of a given network.

The procedure of the embedding learning of the brain 
functional network is shown in Fig.  3. It includes two 
phrases: 

1. f-GCN: learning the latent embedding representation 
of graph instance based on each ROI’s connectivity 
into a meaningful low-dimensional representation for 
each brain network instance. The framework jointly 
optimizes the two parts: multi-graph clustering for cor-
relation reduction and embedding learning with graph 
convolutions in a unified framework. The f-GCN model 
produces the embedding E for all network instances, 
then the learned embedding is fed to the second model 
(p-GCN).

2. p-GCN: further learning the graph embedding by mes-
sage passing according to the network embedding 
E describing each subject and the adjacent matrix 
between samples Â . As shown in Fig. 3, the input layer 
of p-GCN is defined as: Ê

0
= E

L , where EL is the set of 
node embedding features learned by f-GCN. The main 
idea is to generate a node ê representation by aggregat-
ing its own features ei and neighbors’ features ej , where 
j ∈ ��������(i) . p-GCN also stacks multiple graph con-
volutional layers to extract high-level node representa-
tions. The model inductively learns node representation 
by recursively aggregating and transforming feature 
vectors of its neighboring subjects. Finally, the p-GCN 
outputs a matrix Ê ∈ RD×P̂ , where the d-th row describes 
a latent representation of brain network from the d-th 
subject, and P̂ is the conditionality of the final network 
embedding. Intuitively, and Ê can be used as features for 
the tasks of brain disorder disease diagnosis.

The goal of HI-GCN for the graph classification task is 
to learn a nonlinear mapping from a brain network to an 
embedding vector. Note that both f-GCN and p-GCN are 

Fig. 2  The procedure of brain 
FC network construction
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jointly updated via backpropagation. The procedure is 
defined as:

which involves two functions:

In the next subsection, we introduce details about the two 
parts of Hi-GCN respectively.

 f‑GCN: Learning the Brain Network Embedding with MGC

In a brain network, the dimension of functional connectiv-
ity could be relatively large and thus not very discriminant. 
The noisy connections that are most influenced by experi-
mental noise need to be removed for further analysis. In 
this study, we develop a multi-graph clustering (Tang et al., 
2009) based functional connectivity reduction strategy to 

(4)�� −��� ∶ N →

[
ê, ŷ

]
,

(5)� −���(N) = e; � −���(e, Â) =
[
ê, ŷ

]

obtain the clusters as supernodes and remove the noisy con-
nections for diagnosing disorder diseases. The number of 
clusters is controlled as a hyperparameter. Our objective 
is well-motivated: by better reducing the noisy correlation 
edges with a multi-graph clustering, a better brain network 
can be learned.

Multi-graph clustering (MGC) aims to improve clustering 
accuracy by leveraging information from different domains. 
It has been shown to be extremely effective for achieving bet-
ter clustering results than single graph-based clustering algo-
rithms. One natural model for unsupervised graph clustering 
is to approximate the given graph through a low-rank matrix 
factorization A ≈ F

T
A
s
F , where F  is an M × C matrix, and 

A
s is an C × C symmetric matrix, C indicates the number of 

clusters. Given multiple graphs (brain networks), the under-
lying clustering F  is shared among graphs. The matrix F  
to be optimized plays two roles: 1). Each item fij can be 
interpreted as the membership of the node i to the super-
node Sj . 2). Fi is assigned a value indicating how important 

Fig. 3  An illustration of the procedure of network embedding learning in HI-GCN
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node i is for the prediction task. With MGC, we can obtain 
a set of clusters as supernodes S1, S2, ..., SC and the weighted 
adjacency matrix of the supergraph: As = FAF

T . With the 
supernodes S1, S2, ..., SC and the weighted adjacency matrix 
A

s , a coarsened graph is constructed. Then, three graph 
convolutional layers are stacked to learn the graph structure 
using the weighted adjacency matrix As.

Different from traditional clustering which groups the 
similar nodes, the aim of MGC is to hide the noisy connec-
tivity by grouping them into a supernode, thus highlighting 
the indicative edges connecting the supernodes. In other 
words, the weight of functional connections connecting the 
nodes crossing different clusters is enhanced, whereas the 
nodes within clusters and their connections are removed.

Most learning approaches treat clustering and classifica-
tion separately (i.e., sequentially), but recent research has 
shown that optimizing the two tasks jointly can substan-
tially improve the performance of both. The question then 
is how to simultaneously learn the MGC and the GNN for 
time series in an end-to-end framework. We incorporate 
the grouping multi-graph clustering into the GCN model 
to reduce dimensionality as part of our end-to-end neural 
network model. Thus, the node clustering can be combined 
and blended with the graph convolution and classification 
with a supervision scheme.

p‑GCN: Learning the Brain Network Embedding 
with Subject Correlation

The graph-based method has a wide range of applications. 
The data samples are the nodes of the graph, and the data 
relationship corresponds to the edges on the graph. The 
hypothesis of graph based classification is the importance 
of contextual pairwise information for the classification. As 
with many graph algorithms, the adjacency matrix encodes 
the pairwise relationship for training and test data. The 
learning of the model, as well as the embedding, is per-
formed for both data simultaneously. These methods are 
transductive. For many applications, however, test data may 
not be readily available because the graph may constantly 
be expanding with new vertices. Such scenarios require an 
inductive scheme that learns a model from only a training 
set of vertices and generalizes well to any unseen instance. 
In our work, the graph-based learning with p-GCN is con-
ducted in an inductive setting. In this paradigm, the training 
samples are represented as nodes in the population network 
Â . The graph-based learning of p-GCN consists of two steps: 
graph construction and inference.

Graph construction: The definition of the graph’s edges 
is critical in order to capture the underlying structure of the 
data and explain the similarities between the feature vectors. 
We employ a graph kernel to directly measure the topologi-
cal similarity between functional connectivity networks. The 

graph kernel is one kind of kernel constructed on graphs that 
measures the topological similarity between graphs. More 
formally, given a pair of networks Ni and Nj , a graph kernel 
can be defined as Â(Ni,Nj) =

⟨
𝜙(Ni),𝜙(Nj)

⟩
 , which takes 

into account the topology of networks Ni and Nj.
In our work, we compute the similarity between the struc-

ture of two brain networks directly rather than the embed-
dings, and the similarity score between a pair of brain net-
works Ni and Nj is denoted by Â(Ni,Nj) . Kernel methods 
have the desirable property that they do not rely on explicitly 
characterizing the vector representation �(x) of data points 
in the feature space induced by a kernel function but access 
data only via the Gram matrix K . In this setting, a kernel 
k ∶ 𝔾 × 𝔾 → ℝ is called a graph kernel, which can capture 
the inherent similarity in the graph structure and is reason-
ably efficient to evaluate. Distances between instances with 
the q-th kernel function are calculated and are defined as 
Kq(r

i
a
, ri

b
) , where ri

a
=
∑M

u
Âi(a, u) , indicating the local topol-

ogy of nodes. We assume that the relation structures of brain 
networks belonging to the same class are relatively more 
similar, while those belonging to different classes are rela-
tively more dissimilar. Like kernels on vector spaces, graph 
kernels can be calculated implicitly by computing K . If the 
RBF kernel function is chosen, then the distance between 
instances is calculated as: K , where � is a kernel parameter.

To capture the similarity among networks, the similarity 
between networks Ni and Nj is calculated as:

where wi
a
=

1
∑M

u=1
K(xi

a
,xi

u
)
 is associated with each brain region 

ri
a
 in Ni with the q-th kernel function.
Finally, a joint loss is trained for obtaining the clustering 

and classification as follow:

where Wf  and Wp are the weight parameters of f-GCN and 
p-GCN, F  are the MGC matrix, �1 , �2 and �3 are all positive 
parameters which control contributions of multiple regulari-
zation, respectively, Lotho is orthogonal regularization to 
penal ize the off-diagonal  elements  of  F

T
F  : 

Lotho =
‖‖
‖
F

T
F − diag(diag(FT

F))
‖‖
‖F

 , Lbal is a balancing 
regularization to achieve a balanced clustering: 
Lbal = Var(diag(FT

F)) , where Var(⋅) means variance, Lpos 
is to guarantee the value of F  is positive value.

Inference: When predicting previously unseen data xi , 
the network embedding ei is generated by f-GCN at first. 
Then, a fixed-size set of neighbors of the unseen sample 
from the training set is obtained, the aim of which is to align 
the newly observed nodes to the training embeddings that 

(6)SI(Ni,Nj) =

∑M

a=1

∑M

b=1
wi
a
w
j

b
K(xi

a
, x

j

b
)

∑ni
M
wi
a

∑M

b=1
w
j

b

(7)

min
Wf ,Wp,F

L = LCE(Wf ,Wp,F) + �1Lotho(F) + �2Lbal(F) + �3Lpos(F)
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the algorithm has already optimized. The local adjacency 
matrix of the xi and its training neighbors is indicated as Âi . 
Then, node embedding and predicated label are generated by 
applying the learned p-GCN model according to:

Transfer Learning for GCN

A sufficient number of training samples is necessary for 
training deep learning models. Unfortunately, larger data-
sets in medicine are often relatively small. However, this 
assumption can be relaxed if transfer learning is applied 
in conjunction with deep learning. To overcome this prob-
lem, transfer learning has recently been explored in various 
medical imaging applications. Through applying the transfer 
learning on the two datasets, we explore the hypothesis that 
the diagnosis model of brain disorders with GCN can be 
transferred across relevant diseases.

Define a network domain as � =
{
N̂, f (N̂)

}
 , which includes 

an population network N̂ constructed by all data and a function 
f (N̂) for the graph classification task. Then, the domain can be 
r e p r e s e n t e d  by  �ASD =

{
N̂ASD, fASD(N̂ASD)

}
 a n d 

�AD =
{
N̂AD, fAD(N̂AD)

}
 , respectively. Transfer learning aims 

to boost the generalization capability of the predictive function 
through the transfer of knowledge from �ASD or �AD with its 

(8)ŷi = � −���(ei, Âi)

task fASD or fAD . In transfer learning scenarios of this work, the 
domain and task are different. The task fAD is to discriminate 
AD from MCI, whereras the task fASD is to classify subjects 
suffering from ASD from healthy control subjects.

We developed a novel strategy for the transfer GCN 
method to consider the different topological structure in 
both brain network level and population network level at 
the same time. Note that with pre-trained HI-GCN trained 
on the multiple source brain networks with different levels 
of topological structure, we fine-tune it on the target brain 
networks with corresponding sparsity level. Figure 4 shows 
the different pre-training schemes across two diseases: node 
clustering pretraining (MGC module in f-GCN) pretrain-
ing, node-level feature learning (GCN module in f-GCN) 
pretraining, the whole f-GCN pretraining, graph-level 
embedding learning (p-GCN) pretraining and the ensemble 
pretraining of E-HI-GCN with multi-sparsity level.

Implementation Details

The whole model is optimized in an end-to-end fully 
supervised manner. The hyperparameters in Eq.  7 are 
tuned empirically, which yields the best performance. The 
parameter setting of our model is shown in Table 1. For all 
the HI-GCN models, we choose full-batch training. The 
whole framework was built on PyTorch with GeForce RTX 
3090 GPU for all our experiments.

FC layers
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Fig. 4  The illustration of the transfer learning for HI-GCN
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The previous studies have found that positive and nega-
tive correlation connectivities have different contributions. 
Therefore, all the correlation connectivities are first split 
into positive and negative networks, each of which is per-
formed clustering and graph convolution independently. 
At last, two embeddings are flattened and fed into the fully 
connected layer.

Experiment

In this section, we conducted several sets of comparative 
experiments and rigorously analyzed our results on both 
ABIDE and ADNI data sets. Next, we briefly introduce 
these comparative experiments for them. The experimental 
settings and results will be described in detail in the next 
subsections. In our experiments with the ADNI cohort, 
we validated the effectiveness of the proposed method by 
achieving the highest diagnostic accuracies in two classi-
fication tasks. We also rigorously analyzed our results and 
compared them with the previous studies on the ADNI and 
ABDIE cohort in the literature.

Databases and Preprocessing

We apply our model on two large and challenging databases 
for binary classification tasks. The ABIDE database (Autism 
Brain Imaging Data Exchange database investigates the 
neural basis of autism) (Di Martino et al., 2014) aggregates 
data from different 17 acquisition sites and openly shares 
rs-fMRI and phenotypic data of 1112 subjects. In this work, 
we used data from the ABIDE preprocessed connectome 
project (PCP) (Craddock et al., 2013) using the Configur-
able Pipeline for the Analysis of Connectomes (CPAC). The 
detail procession of PCP and CPAC can be referenced in 
(Friston et al., 1994; Fox et al., 2005; Lund et al., 2005; 
Behzadi et al., 2007). Bandpass filtering (0.01–10 Hz) and 
global signal correction was used in our analysis. After the 

preprocessing, we obtained 871 high quality fMRI time 
series phenotypic information, comprising 403 individuals 
with ASD and 468 normal controls.

The ADNI was launched in 2003 by the National Insti-
tute on Aging (NIA), the National Institute of Biomedical 
Imaging and Bioengineering (NIBIB), the Food and Drug 
Administration (FDA), private pharmaceutical compa-
nies and non-profit organizations, as a $60 million, 5-year 
public-private partnership. We focus on using rs-fMRI to 
discriminate individuals with Mild Cognitive Impairment 
(MCI) from individuals diagnosed with Alzheimer’s Disease 
(AD). We select the same set of 133 subjects used in (Dadi 
et al., 2019), comprising individuals with 99 MCI and 34 
diagnosed with Alzheimer’s Disease (AD).

Evaluating the Effectiveness of our TE‑HI‑GCN

In this section, we conduct an empirical evaluation for the 
proposed methods by comparing the traditional method with 
network connectivity features and GCN as baseline methods 
on two publicly available rest-fMRI datasets: ABIDE and 
ADNI. For the ADNI dataset, the class of AD (minority) is 
considered as positive class and the class of MCI (majority) 
is considered as negative class.

Network connectivity Feature (NCF) (Abraham et al., 
2017): the feature vector from brain networks is extracted 
by vectoring the functional connectivity matrix. Specifi-
cally, the upper triangle values in the functional connectiv-
ity matrix are extracted and flattened to a vector of features. 
In the connectivity matrix, there exist a large number of low 
level features (i.e., M×(M−1)

2
 , where M is the total number of 

ROIs). Moreover, Recursive Feature Elimination (RFE) is 
used to feature selection. For a fair comparison, the amount 
of features selected is equal to the dimension of the embed-
ding vector generated by f-GCN. At last, a ridge classifier is 
trained on the extracted feature vector.

GCN: we choose Eigenpooling GCN (Ma et al., 2019) as 
a baseline method, which is an end-to-end trainable graph 
pooling method producing hierarchical representations of 
graphs.

T-HI-GCN is a transfer learning method based on HI-
GCN, which is a single classifier working on the fully con-
nected brain networks.

E-HI-GCN is an ensemble of HI-GCN, each of which is 
trained on the different sparsity level brain networks.

In our systematic study, we find that pre-training does not 
always help. Both T-HI-GCN and TE-HI-GCN with the best 
transfer settings are shown in Tables 6 and 7. The ablation 
study to investigate the effect of each component pretraining 
are discussed in “The Effectiveness of Ensemble Learning”

We report the results of disease diagnosis of ASD and AD 
on the ABIDE and ADNI datasets in Tables 2 and 3. Our 
systematic study suggests the following trends:

Table 1  The parameter settings of network training of TE-HI-GCN

parameter name parameters

learning rate 0.001
learning rate schedule CosineLR(Cosine 

Annealing with Warm 
Restarts)

T_max in CosineLR 50
batch size of f-GCN 32
Training iterations of f-GCN 300
Training iterations of E-HI-GCN for 

ABIDE & ADNI
2000 & 300

Number of clustering 5
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Observation (1): From Tables 2 and 3, we can see that 
the proposed methods consistently achieve better classifi-
cation performance than the competing methods on these 
two tasks in terms of accuracy (ACC) and AUC, which 
demonstrates the effectiveness of our TE-HI-GCN method. 
With the student’s t-test at a level of 0.05, our proposed 
methods including TE-HI-GCN, E-HI-GCN,T-HI-GCN and 
HI-GCN significantly outperform GCN in most cases except 
the result on the ADNI dataset in terms of ACC. More spe-
cifically, it can be seen that the proposed TE-HI-GCN model 
achieves the best classification performance with an ACC 
(AUC) of 0.765 (0.762) for ASD and 0.894 (0.893) for AD. 
It has a clear impact on the quality of the predictions, lead-
ing to about 27.93%(31.38%) improvement for ABIDE and 
16.85%(44.50%) for ADNI in terms of accuracy and AUC 
compared with the traditional GCN model. It means that 
our proposed TE-HI-GCN is able to explore the potential 
association in the samples and domains.

Observation (2): It can be observed that the performance 
of Eigenpooling GCN are poor, especially when the dataset 
size is small on ADNI. The results indicate that the tradi-
tional GCN cannot handle the brain networks classification 
problem well due to noisy correlations in the brain networks. 
Both f-GCN and HI-GCN consistently perform better than 
the Eigenpooling GCN. It further confirms that the noisy 
correlation reduction in f-GCN is effective for learning a 
clean network structure. Compared with f-GCN, HI-GCN 
performs the graph embedding learning from a hierarchi-
cal perspective considering the structure in individual brain 
network and the subject’s correlation in the global popula-
tion network, which can capture the essential embedding 

features to improve the classification performance of disease 
diagnosis.

Observation (3): It is worth noting that the proposed 
E-HI-GCN achieves the second best performance for ASD 
diagnosis in terms of ACC and AUC, respectively. Besides, 
it actually further confirms our finding that a single HI-GCN 
with a full connected network is worse than E-HI-GCN with 
the ensemble of sparse networks due to the inappropriate 
brain network construction. Incorporating ensemble learning 
allowed improving the classification performance further, as 
suggested by the results achieved by the E-HI-GCN and TE-
HI-GCN models. The construction of multiple scale brain 
networks benefits the single GCN model by exploring dif-
ferent views of the brain network.

Observation (4): In this present study, we endeavored to 
examine whether our model trained on a specific popula-
tion (AD/MCI or ASD/Normal control) is generalizable to 
other populations for the diagnosis of ASD/Normal control 
or AD/MCI. Experiments on the two datasets show that the 
pre-training strategy with appropriate setting achieves con-
sistently better performance than the models from scratch. 
Based on the observations above, it can be concluded that 
the diagnosis model of brain disorders with GCN can be 
transferred across relevant diseases. It also confirmed our 
initial hypothesis about the association existing between 
ASD and AD on the brain networks. In addition, the strat-
egy is able to partially overcome the overfitting problem 
caused by the limited amount of data in ADNI. The results 
obtained on the diagnosis task of AD in ADNI show a 
larger increase in performance with the proposed TE-HI-
GCN over the task of ASD, indicating that our model is 

Table 2  Performance 
comparison of various methods 
on ABIDE. The best results are 
bold

Methods ACC AUC Precision Sensitivity F1

NCF 0.586±0.003 0.583±0.003 0.584±0.003 0.583±0.003 0.583±0.003
GCN 0.598±0.003 0.580±0.004 0.676±0.004 0.432±0.014 0.527±0.005
f-GCN 0.612±0.004 0.609±0.004 0.652±0.008 0.660±0.034 0.634±0.010
HI-GCN 0.672±0.004 0.666±0.004 0.682±0.005 0.725±0.005 0.710±0.003
T-HI-GCN 0.666±0.005 0.661±0.005 0.680 ±0.005 0.710 ±0.006 0.701±0.004
E-HI-GCN 0.735±0.001 0.750±0.001 0.745±0.003 0.720±0.007 0.745±0.001
TE-HI-GCN 0.765±0.003 0.762±0.003 0.779±0.005 0.799±0.009 0.784±0.003

Table 3  Performance 
comparison of various methods 
on ADNI datasets. The best 
results are bold

Methods ACC AUC Precision Sensitivity F1

NCF 0.849±0.018 0.858±0.019 0.926±0.018 0.835±0.029 0.868±0.018
GCN 0.765±0.015 0.618±0.028 0.407±0.195 0.300±0.116 0.321±0.114
f-GCN 0.716±0.009 0.630±0.021 0.779±0.012 0.850±0.016 0.801±0.005
HI-GCN 0.726±0.012 0.695±0.020 0.818±0.014 0.792±0.020 0.793±0.008
T-HI-GCN 0.743±0.008 0.665±0.022 0.817±0.013 0.825±0.013 0.812±0.006
E-HI-GCN 0.814±0.011 0.787±0.019 0.876±0.014 0.879±0.016 0.865±0.007
TE-HI-GCN 0.894±0.004 0.893±0.006 0.940±0.005 0.912±0.006 0.922±0.002
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more effective on the task with limited data. Fine-tuning 
from the pre-training model helps quickly generate an ini-
tial model weight of E-HI-GCN models, thus reducing the 
requirements of a large labeled training set and acceler-
ating the training stage. Moreover, transfer learning also 
helps improve the generalization capability of E-HI-GCN 
in the task of ASD diagnosis, even if the source domain 
includes little data.

With the ensemble transfer learning scheme on multi-
ple level sparsity networks, TE-HI-GCN achieves improve-
ments of 4.08% and 9.83% over E-HI-GCN on ASD and AD. 
Transfer learning is not always effective for GCN models. 
We can see that T-HI-GCN decreases the performance by 
0.89% and 0.75% compared with HI-GCN in terms of ACC 
and AUC. The results confirm that our ensemble transfer 
strategy with multi-scale networks avoids negative transfer 
across datasets and achieves the best performance. It also 
demonstrates that brain networks construction is critical for 
transfer learning on brain networks data. Transfer learning 
is more effective when the source and target domains are 
sparse networks. The ensemble strategy can help achieve 
transferable representations based on a network topology 
with multiple levels of sparsity.

Observation (5): In Table 2, the worst performance on the 
ABIDE is observed for NCF with an average ACC of 0.586 
and an AUC of 0.583. The performance of all deep learning 
methods is better than that of NCF in terms of ACC. Overall, 
the results suggest that deep learning methods can enable 
better representation of brain networks as compared to more 
traditional machine learning methods. However, all the deep 
learning models except TE-HI-GCN are worse than NCF 
on the ADNI dataset in Table 3. The reason is that training 
GCN models from scratch with limited data tend to overfit 
because we need to optimize a large number of parameters. 
Compared with GCN models, the feature-based method with 
brain connectivity requires less training data. It confirms 
the trend observed: transferring the pre-trained weights is 
especially advantageous when only limited data is available.

Multiple measurement methods and metrics have been 
employed in the literature to estimate the connectivity 
patterns of brain networks from rs-fMRI. The partial and 
full correlation methods are two dominant approaches to 
estimate the connectome in rs-fMRI. A partial correlation 
calculates the interaction between two brain regions after 
factoring out the contribution to the pairwise correlation 
that may be due to global effects. Partial correlations relate 
to the off-diagonal entries of the Inverse Covariance (IC) 
matrix of the data. Estimation of partial correlations is usu-
ally achieved by Maximum Likelihood Estimation (MLE) 
of the IC matrix. Recently, partial correlation of brain net-
works obtained through covariance matrix followed by spa-
tial filters was applied to analyze the brain connections. In 
our study, we employed a partial correlation method with 

GLASSO (Sparse inverse covariance) to estimate the FC 
in diagnostic groups and compared their performance with 
the full correlation method (PCC). A detailed comparison 
of different correlations in our study is shown in Fig. 5. We 
found that full correlation features with PCC perform better 
than partial correlation (GLASSO) approaches regardless of 
any classification models.

Experiment on Other Parcellations

The parcellations of brain networks can be divided into 
two categories: predefined structural parcellation atlases 
and functional atlases. To test whether these observations 
were dependent on the choice of the atlas, we applied the 
same methodology on different atlas. We evaluated our 
model E-HI-GCN on other structural atlases besides AAL: 
Talariach Daemon (TT) atlas (derived from myeloarchitec-
tonic segmentations) , Harvard-Oxford (HO) atlas (derived 
from anatomical landmarks: sulci and gyral), Eickhoff-Zilles 
(EZ) atlas (derived from cytoarchitectonic segmentations). 
Recently, some functional atlases have been proposed. We 
also test our model on two functional atlas: CC200 (200 
functionally homogeneous regions generated using spatially 
constrained spectral clustering algorithm), and DOS160 
atlas (161-region atlas generated based on meta analysis of 
task-related fMRI data). From Fig. 6, we find that the result 
obtained from CC200 works best, which implies that the pair-
wise correlations among CC200 regions contain more dis-
criminatory patterns than AAL and other atlases. Moreover, 
we compared some benchmark methods including traditional 
methods (Ridge, SVM and FCN) and deep learning methods 
(BrainNet (Kawahara et al., 2017), 3D-CNN (Khosla et al., 
2019), ASD-DiagNet (Eslami et al., 2019)) on the multiple 
atlas in Fig. 7. BrainNet extends convolutional neural net-
works (CNNs) to handle graph-structured data. Specifically, 
the edge-to-edge, edge-to-node and node-to-graph convolu-
tional layers are developed to capture topological relation-
ships between network edges. Different from BrainNet that 
works directly with an adjacency matrix derived from the 
connectome data, 3D-CNN exploits the 3D spatial structure 
of rs-fMRI. ASD-DiagNet is a joint learning method com-
bining an autoencoder with a single layer perceptron (SLP) 
to improve the quality of extracted features and optimized 
parameters for the classification model. For the traditional 
classifiers, functional connectivity estimates between pairs 
of ROIs are vectorized as input. It is apparent that our pro-
posed E-HI-GCN observes improvements upon the previous 
methods on all the atlases in terms of ACC.

With the idea in (Khosla et  al., 2019), we explored 
another ensemble learning strategy named multi-atlas 
(MA) ensemble in our work. We chose a variety of so-called 
atlases, which define a specific parcellation of the brain into 
ROIs. Each atlas consisted of between 97 and 200 ROIs. 
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Our proposed HI-GCN with the MAEnsemble averages 
the predictions of the models of different specific methods 
trained on multiple atlases. For classification, the final pre-
diction is computed as the majority vote of the individual 

binary class predictions. We applied the multi-atlas (MA) 
ensemble strategy on the different base classifiers, including 
Ridge, SVM, FCN, BrainNet, 3D-CNN and HI-GCN. From 
Fig. 8, we observe that our HI-GCN ensemble obtains better 
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Fig. 5  The comparison of different connectivity (PCC and GLASSO) estimation for NCF, f-GCN, HI-GCN and E-HI-GCN with respect to mul-
tiple metrics

Fig. 6  Performance of E-HI-
GCN on multiple atlases
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performance than the other base classifier. The result demon-
strated the flexibility advantage of our E-HI-GCN combined 
with the strength of multiple atlas.

Experiment on HCP Dataset

We apply our proposed E-HI-GCN to predict the gender 
of healthy individuals of high quality publicly available rs-
fMRI dataset: Human Connectome Project (HCP, N=1,096). 
The Human Connectome Project (HCP) S1200 (Van Essen 
et al., 2013) contains the rsfMRI data for 1096 young adults 
(ages 22-35). We used the first session (15 min, 1200 frames, 
TR=0.72s) for each subject and excluded 5 rs-fMRIs with 
less than 1200 frames, resulting in data of 498 females and 
593 males. Each rs-fMRI went through the minimal process-
ing pipeline of HCP, fMRISurface (Glasser et al., 2016), 
which mapped each volume time series to the standard 
CIFTI grayordinates space. The cortical surface was parcel-
lated to 22 major ROIs (Glasser et al., 2013), and the average 
BOLD signal in each ROI was normalized to z-scores.

As we show in Table 4, the proposed HI-GCN and E-HI-
GCN bring improvements to the prediction performance. 
It can be verified that removing the high dimensional 
noisy connections and modeling the correlation among the 
instances contributes to the performance improvements. 
Moreover, the ensemble learning strategy for combining 
predictions from multi-scale networks helps promote the 
learning performance.

Interpretability

Each item fi,j in F  can be interpreted as the membership 
of the node i to the cluster Sj . With the optimized F  , the 
function m(⋅) is the cluster mapping function which maps 
the nodes to the corresponding clusters according to the 
membership optimized. The score of the p-th subnetwork 
SNp is calculated as:

where np is the amount of the brain regions of p-th 
subnetwork.

Moreover, the inter-network connections in this system play 
essential roles. To explore the important cross-subnetwork cor-
relations, the correlation score of two subnetworks SNp and 
SNq is calculated as:

where np and nq are the amounts of the brain region of 
subnetworks.

In neuroscience studies, researchers are not only inter-
ested in providing a better prediction model but also in 
identifying which brain areas are more affected by the dis-
ease. This can help to diagnose the early stages of the dis-
ease and how it spreads. Rs-fMRI studies in neurotypical 
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Fig. 7  Performance comparison 
of different methods on multiple 
atlases
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individuals have identified several major intrinsically con-
nected networks related to visual, motor, auditory, memory 
and executive processes. It is envisaged that the identifi-
cation of brain networks using FC may provide potential 
biomarkers to understand the organization and alterations 
of brain networks in ASD. To better understand the corti-
cal circuitry underlying the connectivity between large-
scale neural networks, we conduct our model with data-
driven to investigate potential intrinsically within-network 
and between-network connectivity. One of the strengths 
of our E-HI-GCN is that it facilitates the identification 
of biomarkers due to the node clustering property of our 
f-GCN. In this experiment, we empirically investigate the 
effectiveness of subnetwork and inter-subnetwork connec-
tions identification. We evaluate eight networks including 
DMN (default mode network), DAN (dorsal attention), 
AN (auditory network), CN (core network), SN (salience 
network), SMN (somato-motor network), VN (visual net-
work), CEN (central executive network) with brain net-
works templates provided in (Mantini et al., 2009). Top 3 
subnetworks and the top 5 inter-subnetworks selected by 
our E-HI-GCN are shown in Table 5, Figs. 9 and 10.

We found that the top 3 subnetworks identified by 
E-HI-GCN yielded promising patterns expected from 
prior knowledge on neuroimaging and cognition. These 
included the CEN, DMN and SN, which are three core 
neurocognitive networks. Neuroimaging studies have dem-
onstrated that ASD is associated with the altered func-
tional connectivity of the three neurocognitive networks 
that are hypothesized to be central to the symptomatology 
of ASD. The default mode network (DMN) consists of key 
nodes in the posterior cingulate cortex (PCC), the medial 
temporal lobes (MTL) and the medial prefrontal cortex 

(MPFC) and is active in self-related tasks such as auto-
biographical memories or social tasks such as the theory 
of mind. The salience network (SN) involves the anterior 
insula (AI) and the anterior cingulate cortex (ACC) and 
is thought to regulate the switching of endogenous and 
exogenous attention to relevant stimuli which help in guid-
ing behavior.

We also investigated the cross-network interactions. The 
inter-subnetwork pairs included (CEN,SMN), (CEN,SN), 
(DMN,SMN), (DMN,CEN) and (DMN,VN). The findings 
in our study are consistent with results reported in previous 
studies. Neuroimaging studies have demonstrated that dys-
function of triple networks including CEN, SN, and DMN 
were associated with ASD. Notably, the SN, CEN, and  
DMN are often co-activated or deactivated during  
attentionally-demanding tasks, suggesting that these networks  
function in concert to support attention and cognition. In 
particular, the triple-network model posits a central role 
for the SN in initiating switching between the CEN and 
DMN, a process essential for attention and flexible cogni-
tive control. Moreover, from a clinical standpoint, anticor-
related contributions from regions of the DMN and SMN 
have been previously reported in ASD (Lynch et al., 2013) 
(Nebel et al., 2016). Besides, some between networks FCs 
including DMN-VN keep their sign of relation to diagnosis 
variable at different frequency bands diagnosing ASD (Lee 
& Frangou, 2017).

Ablation Study and Discussion

The Effectiveness of Transfer Learning

Pre-training is crucial for learning deep neural networks. 
The fundamental problems that need to be considered for 
reliability is what to transfer. There are several options for 
pre-training, as shown in Fig. 4. In this study, We conduct an 
ablation study in Tables 6 and 7 to explore several transfer 
learning strategies to investigate which one is best to lever-
age the source model and adapt it to the target task, includ-
ing node clustering pretraining (MGC module in f-GCN) 
pretraining, node-level feature learning (GCN module in 
f-GCN) pretraining, the whole f-GCN pretraining, graph-
level embedding learning (p-GCN) pretraining.We conduct 
the systematic investigation of pre-training strategies for our 
GCN model from the two aspects: 

Table 4  Performance 
comparison of various methods 
on HCP dataset. The best results 
are bold

Methods ACC AUC Precision Sensitivity F1

GCN 0.687±0.002 0.679±0.002 0.691±0.003 0.738±0.005 0.710±0.003
f-GCN 0.595±0.002 0.581±0.002 0.612±0.002 0.736±0.025 0.657±0.004
HI-GCN 0.736±0.002 0.733±0.003 0.765±0.005 0.770±0.006 0.761±0.001
E-HI-GCN 0.750±0.002 0.750±0.002 0.783±0.003 0.758±0.003 0.767±0.001

Table 5  Top 3 intra-subnetworks and the top 5 cross inter-subnet-
works selected and weights optimized by our model

Subnetworks Correlation between subnetworks

subnetwork name weight inter-subnetworks name weight

CEN 0.046 (CEN,SMN) 0.078
DMN 0.040 (CEN,SN) 0.075
SN 0.039 (DMN,SMN) 0.062
- - (DMN, CEN) 0.061
- - (DMN,VN) 0.059
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1. ASD → AD Except transfer on the GCN module of 
f-GCN, all the transfers strategies are effective and 
improve the performance of target models of AD. This 
transfer learning strategy is able to enhance GCN clas-
sification when the target dataset has a limited sample 
size. Our findings show that the best strategy is pre-
training the whole f-GCN. The conclusion can be drawn 
that pre-training f-GCN can capture generic structural 
features in brain networks for two diseases and improve 
the performance of target models. The network struc-
tural characteristics among the brain regions are shared 
across the diseases. The pre-training on GCN module of 
f-GCN performs worse, which suggests that transferring 
the GCN module of f-GCN results in negative transfer. 
This is because the task of node embedding learning in 

brain networks for ASD might be unrelated to the task 
for AD and can even hurt the downstream performance 
(negative transfer).

2. AD → ASD From Table 7, it is surprising that only the 
pre-training p-GCN is effective. The reason may be that 
the limited data in AD cannot train a generalized model, 
the learned parameters of which are not appropriate the 
ASD. The parameters of p-GCN module are relatively 
fewer. Hence, the p-GCN is easy to be trained well on 
the AD with limited data, so that graph embeddings are 
robust and transferable across the domains. The learn-
ing of network embeddings with considering the sample 
correlation can generalize across tasks. Thus it can be 
well transferred to the ASD. Although it actually further 
confirms our finding that the two diseases are correlated, 

Fig. 9  The top 3 subnetworks 
identified by our E-HI-GCN

1 CEN

2 DMN

SN
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Fig. 10  The top 5 inter-
subnetworks identified by our 
E-HI-GCN

1 CEN-SMN

2 CEN-SN

3 DMN-SMN

4 DMN-CEN
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the learned knowledge for transferring is different for 
ASD → AD and AD → ASD. An appropriate transfer 
learning for learned knowledge from the source dataset 
can help solve the target task.

The Effectiveness of Ensemble Learning

Finally, we examined the behavior of the ensemble method 
by means of varying a different numbers of threshold val-
ues, which plays a crucial role in the ensemble performance. 
The effectiveness of ensemble with respect to the ensemble 
capacity is as shown in Fig. 11 and Table 8. As can be seen 
that more component classifiers with different numbers of 
threshold values can achieve better performance. The best 
performance can be achieved by the ensemble method with 
15 classifiers in terms of ACC (0.825) and AUC (0.823), 
respectively.

Comparisons with Prior Works

Table 9 shows the comparable results of our ASD vs. NC 
classification with prior works in terms of accuracy as 
reported in the respective references. In general, two types 
of methods are usually developed for the diagnosis of men-
tal disorder diseases: (1) the traditional machine learning 
procedure (feature extraction and classification) and (2) the 
deep learning procedure (an end-to-end procedure). For 
the traditional machine learning procedure, a straightfor-
ward solution that has been extensively explored is to first 
derive features from brain networks. Dadi et al. (2019) con-
ducted a sufficient comparison (8 different ways of defining 
regions-either pre-defined or generated from the rest-fMRI 
data, (3) measures to build functional connectomes from 

the extracted time-series, and 10 classification models to 
compare functional interactions across subjects). Through 
the comparison, the optimal choices in functional connec-
tivity prediction pipeline brain regions defined with regions 
using DictLearn, connectivity matrices parametrized by 
their tangent-space representation, and an l2-regularized 
logistic regression as a classier. On the ABIDE dataset, 
the best accuracy is 71.1% (median) and 75.6% (the 95th 
percentile). Abraham also employed the same strategy with 
the best pipeline and obtained a similar performance (accu-
racy is 66.8%) (Abraham et al., 2017). The most important 
limitation of the traditional machine learning procedure is 
that feature extraction and model learning are treated as two 
separate tasks in these methods, so potential inconsistency 
between human-engineered features and classifiers may 
degrade the final performance of these methods. Moreover, 
relying solely on subject-specific imaging feature vectors 
fails to model the interaction and similarity between sub-
jects, which can reduce performance. Compared with the 
traditional machine learning procedure, the expressive power 
of deep learning to extract the underlying complex patterns 
from data has been well recognized. The power of deep 
learning lies in automatically learning relevant and power-
ful features for any perdition task, which is made possible 
through end-to-end architectures. The result demonstrates 
that the deep learning based end-to-end methods achieve 
a better performance in network-structured learning tasks. 
Heinsfeld et al. (2018) and Eslami et al. (2019) have pro-
posed a joint learning procedure using an autoencoder and 
a single layer or multi-layer perceptron, which results in 
improved quality of extracted features and optimized param-
eters for the model. To the best of our knowledge, the work 
of Parisot et al. (2017) is currently relevant with ours for 
ASD diagnosis on the whole ABIDE dataset. Parisot et al. 
define a subject’s feature vector as its vectorised functional 

Table 6  Performance of 
different pre-training strategies 
on ABIDE dataset.The best 
results are bold

Pre-learning ACC AUC Precision Sensitivity F1

f-GCN 0.542±0.002 0.575±0.003 0.557±0.008 0.529±0.018 0.523±0.08
MGC in f-GCN 0.542±0.002 0.546±0.002 0.500±0.058 0.620±0.005 0.504±0.025
GCN in f-GCN 0.700±0.001 0.699±0.001 0.679±0.003 0.674±0.003 0.678±0.001
p-GCN 0.765±0.003 0.762±0.003 0.779±0.005 0.799±0.009 0.784±0.003
E-HI-GCN 0.583±0.001 0.572±0.001 0.587±0.005 0.448±0.019 0.476±0.006

Table 7  Performance of 
different pre-training strategies 
on ADNI dataset.The best 
results are bold

Pre-learning ACC AUC Precision Sensitivity F1

f-GCN 0.894±0.004 0.893±0.006 0.940±0.005 0.912±0.060 0.922±0.002
MGC in f-GCN 0.890±0.006 0.890±0.007 0.939±0.005 0.907±0.009 0.918±0.004
GCN in f-GCN 0.797±0.011 0.745±0.021 0.839±0.015 0.907±0.014 0.858±0.006
p-GCN 0.821±0.009 0.798±0.016 0.877±0.012 0.884±0.011 0.871±0.005
E-HI-GCN 0.849±0.008 0.857±0.012 0.943±0.008 0.846±0.021 0.880±0.007
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connectivity matrix and employ a ridge classifier to select 
the most discriminative features from the training set. With 
the selected connectivity information as the subject’s feature, 
a population is represented as a graph where its vertices are 
associated with the extracted image-based feature vectors 
and the edges encode non-imaging measures (gender and 
acquisition site). The significant difference of our HI-GCN 
from the model in Parisot et al. (2017) are: 1) node: the 
embedding features of the nodes in the population is learned 
automatically rather than extracted; 2) edge: the similarity 
between nodes is calculated considering the structure of the 
brain functional network when constructing the population 
network; 3) induction: the GCN model proposed in Parisot 
et al. (2017) is a transductive method with a fixed population 
network. They do not naturally generalize to unseen data 
since they make predictions on nodes in the fixed popula-
tion network. Our HI-GCN is an inductive learning method 

and generalizes to produce embeddings for unseen nodes. 
Experiments demonstrate that the proposed HI-GCN model 
performs better than the GCN model proposed in Parisot 
et al. (2017), indicating simultaneously taking both the brain 
regions correlations and subject correlations into account is 
important. The apparent limitation of such a model is that 
they can only learn on the vectorized node, which cannot 
effectively generalize the condition that the node is a graph 
describing the functional connectivity. The graph represen-
tation techniques have recently shifted from hand-crafted 
kernel methods to deep learning based end-to-end methods, 
which achieve better performance in graph-structured learn-
ing tasks. Moreover, the feature extracted prior to the clas-
sification may not be appropriate for GCN classification due 
to lacking the capacity of jointly learning. From Table 10, 
we can observe that our models usually achieve competi-
tive performance against the state-of-the-art methods. We 
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Fig. 11  The results of our E-HI-GCN with different numbers of threshold values

Table 8  The results of our 
E-HI-GCN with different 
numbers of threshold values. 
The best results are bold

Number of 
threshold 
values

Range of 
threshold 
values

ACC AUC Precision Sensitivity F1

5 [0.1,0.5] 0.717±0.002 0.714±0.002 0.737±0.003 0.758±0.003 0.740±0.002
8 [0.05,0.4] 0.762±0.002 0.760±0.003 0.752±0.003 0.733±0.010 0.736±0.004
10 [0.05,0.5] 0.735±0.001 0.750±0.001 0.745±0.003 0.720±0.007 0.745±0.001
12 [0.05,0.6] 0.788±0.003 0.786±0.003 0.770±0.003 0.774±0.009 0.768±0.004
15 [0.05,0.75] 0.825±0.001 0.823±0.001 0.817±0.003 0.806±0.003 0.809±0.001
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improved the previously reported results and obtained 76.5% 
on the AAL atlas, 78.7% on the CC200 atlas, and 86.3% with 
an ensemble on the multi-atlas in the distinction of ASD 
from control subjects, respectively. Overall, the results dem-
onstrate that our models can improve upon state-of-the-art 

algorithms not just in traditional classification methods but 
also in deep learning methods. Although the experimental 
setup in these references is slightly different, this table shows 
that our end-to-end classification model can classify the sub-
jects more accurately.

Table 9  The comparison among different classifiers with previous methods for ASD vs. NC on ABIDE dataset

Method Feature Classifier Data Atlas CV ACC 

.Parisot et al. 
(2017)

Brain connectivity 
feature

GCN 403 ASD vs. 468 
NC

Harvard Oxford 
(HO)

10-CV 69.5%

.Abraham et al. 
(2017)

Tangent space 
embedding

l2-regularized clas-
sifiers

403 ASD vs. 468 
NC

data-driven atlas 
(dictionary learn-
ing)

Inter-site 10-CV 66.8%

.Dadi et al. (2019) Network connectiv-
ity feature

l2-regularized 
logistic regres-
sion

402 ASD vs. 464 
NC

data-driven atlas 
(dictionary learn-
ing)

random 100-CV 69.7%

.Wong et al. (2018) Riemannian geom-
etry feature

logistic regression 403 ASD vs. 468 
NC

HO 10CV 71.1%

.Eslami et al. 
(2019)

No feature extraction ASD-DiagNet 
(with aug)

505 ASD vs. 530 
NC.

CC200 10-CV 69.4% (70.3%)

.Eslami et al. 
(2019)

No feature extraction ASD-DiagNet 
(with aug)

505 ASD vs. 530 
NC.

AAL 10-CV 64.5% (67.5%)

.Eslami et al. 
(2019)

No feature extraction ASD-DiagNet 
(with aug)

505 ASD vs. 530 
NC.

TT 10-CV 65.2% (65.3%)

.Heinsfeld et al. 
(2018)

No feature extraction Two stacked 
denoising autoen-
coders

505 ASD vs. 530 
NC

CC200 10-CV 70%

.Dvornek et al. 
(2018)

rs-fMRI time-
series+phenotypic 
features

LSTM 529 ASD vs. 571 
NC

CC200 10-CV 70.1%

.Dvornek et al. 
(2017)

rs-fMRI time-series LSTM 529 ASD vs. 571 
NC

CC200 10-CV 66.8%

.Sherkatghanad 
et al. (2020)

No feature extraction CNN 505 ASD vs. 530 
NC.

CC400 10-CV 70.2%

.Nielsen et al. 
(2013)

Network connectiv-
ity feature

general linear 
model

539 ASD vs. 573 
NC

no atlas leave-one-out 60.0%

.Xing et al. (2018) No feature extraction CNN with element-
wise filters

569 ASD vs. 572 
NC

AAL 5-CV 66.8%

.Aghdam et al. 
(2018)

No feature extraction Deep belief Net-
work (DBN)

116 ASD vs. 69 
NC

AAL 10-CV 65.56%

.Kazeminejad and 
Sotero (2020)

Graph features MLP 493 ASD vs. 520 
NC

AAL cross-validation 
sets

55.50%

.Kazeminejad and 
Sotero (2020)

PCA + Graph 
features

MLP 493 ASD vs. 520 
NC

CC200 cross-validation 
sets

62.40%

Our method No feature extraction HI-GCN 403 ASD vs. 468 
NC

AAL 10-CV 67.2%

Our method No feature extraction E-HI-GCN(10) 403 ASD vs. 468 
NC

AAL 10-CV 73.5%

Our method No feature extraction E-HI-GCN(15) 403 ASD vs. 468 
NC

AAL 10-CV 82.5%

Our method No feature extraction TE-HI-GCN 403 ASD vs. 468 
NC

AAL 10-CV 76.5%

Our method No feature extraction E-HI-GCN 403 ASD vs. 468 
NC

CC200 10-CV 78.7%

Our method No feature extraction E-HI-GCN 403 ASD vs. 468 
NC

MA ensemble 10-CV 86.3%
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We also compare our methods with several recent state-of 
the-art methods reported in the literature using rs-fMRI data 
for AD vs. MCI classification. Few works for discriminat-
ing AD and MCI with functional brain networks exist in 
the literature. The only comparable method is proposed in 
Dadi et al. (2019). The best accuracy is 72.5% (median) and 
84.5% (the 95th percentile) over cross-validation folds (n = 
100) on the ADNI dataset with the same samples. Results 
obtained for the ADNI database show an increase in perfor-
mance with respect to the competing method in Table 10.

Conclusion

Recently, functional connectivity networks constructed from 
the rs-fMRI are holding great promise for distinguishing the 
disorder patients from NC. Network embedding is aimed 
at learning compact node representations based on network 
topology to facilitate the task of network classification. Deep 
learning models have an enormous capacity of network 
embedding with a huge number of parameters that need to 
be trained during the learning process. The rs-fMRI data is 
in general of high dimension with a small sample size, and 
the use of deep learning in small data sets still remains a 
big challenge. In order to achieve a better network embed-
ding from brain networks, we propose a hierarchical GCN 
framework for modeling the brain connectivity network and 
population network simultaneously to learn the network 
feature embedding with considering the network topology 
information and subject’s association. Moreover, we develop 
a transfer learning scheme enabling GCN to learn generic 
graph structural features by leveraging the commonality in 
two related domains. To transfer the appropriate knowledge 
for the network data avoiding negative transferring, the 
transfer learning is also carefully conducted on the multiple 
levels of topological structure in the original connectivity 
network. Extensive experiments are conducted on two real 
medical clinical applications: diagnosis of ASD and diag-
nosis of Alzheimer’s disease, which demonstrates network 
embedding learning from exploring the data correlations and 
transferring from the related domains can improve predic-
tion performance. Moreover, we also explore the hypothesis 

that the diagnosis model of brain disorders with GCN can 
be transferred across relevant diseases. This is in line with 
the conclusion drawn from previous medical image-based 
computer-aided detection studies that transfer learning could 
be a useful technique to mitigate the issue due to a small 
well-annotated dataset in the medical imaging domain. Fur-
thermore, our study found that some connections within sub-
networks and between subnetworks have a more significant 
role in the classification of diagnostic groups.

Information Sharing Statement

The data sets used in this study are freely available and can be 
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responding descriptions are shown in Sec. 5.1 Databases and 
Preprocessing. The code for the TE-HI-GCN is available at: 
https:// github. com/ llt18 36/ TE- HI- GCN.
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